
» SnuFfLEupAGus
A pretty elephant,
killing bug classes,
putting sparadrap on the rest.

1 / 81

» Bonjour

2 / 81

» Good morning
We're happy to be here
We're working at the same (French¹) company
In the security team.
It's called NBS System
And it's a hosting company, you know, for websites.

¹ Hence our lovely accent.

3 / 81

» What are we trying to solve?
We're hosting a lot of various php applications,
using CMS written by many different super-creative people around the world,
and we'd like to prevent our customers from being pwned.

4 / 81

» What we were doing so far
We have a lot of OS-level hardening
We have some custom IDS
We have a (cool) WAF called naxsi

But not everything is patchable with those, and we can not¹ touch the PHP code.

¹ Nor do we want to.

5 / 81

https://naxsi.com/

» Some stories about PHP

Fig 1. The security team learning about the development processes

6 / 81

» Some words about php

Its syntax draws upon C, Java, and Perl, and is easy to learn. The main goal
of the language is to allow web developers to write dynamically generated web
pages quickly, but you can do much more with PHP.

— the php documentation

7 / 81

» Still words about php

Well, there were other factors in play there. htmlspecialchars was a very early
function. Back when PHP had less than 100 functions and the function
hashing mechanism was strlen(). In order to get a nice hash distribution of
function names across the various function name lengths names were
picked specifically to make them fit into a specific length bucket.

— Rasmus Lerdorf, creator of PHP

8 / 81

» Words about php, again

I don’t know how to stop it, there was never any intent to write a
programming language […] I have absolutely no idea how to write a
programming language, I just kept adding the next logical step on the way.

— Rasmus Lerdorf, creator of PHP

9 / 81

» Words about php, again and again

I was really, really bad at writing parsers. I still am really bad at writing
parsers.

— Rasmus Lerdorf, creator of PHP

10 / 81

» Words about php, again and again and
again and again

We have things like protected properties. We have abstract methods. We have
all this stuff that your computer science teacher told you you should be using. I
don't care about this crap at all.

— Rasmus Lerdorf, creator of PHP

11 / 81

» By the way…
The php way to kill bug classes is to (sometimes) add a warning to its documentation, like
this, about rand:

This function does not generate cryptographically secure values, and should
not be used for cryptographic purposes. If you need a cryptographically
secure value, consider using random_int(), random_bytes(), or
openssl_random_pseudo_bytes() instead.

12 / 81

» Fortunately…
Did we mention that anyone is able to add comments to the official PHP documentation?

If you are looking for generate a random expression, like password with
alphanumeric or any other character, use this function:

function GeraHash($qtd){
$Caracteres = 'ABCDEFGHIJKLMOPQRSTUVXWYZ0123456789';
$QuantidadeCaracteres = strlen($Caracteres);
$QuantidadeCaracteres--;

$Hash=NULL;
 for($x=1;$x<=$qtd;$x++){
 $Posicao = rand(0,$QuantidadeCaracteres);
 $Hash .= substr($Caracteres,$Posicao,1);
 }

return $Hash;
}

13 / 81

» Developers

Fig 2. Picture of a developer copy-pasting vulnerable code between projects

14 / 81

» Hackers

Fig 3. Rare footage of a hacker remotely pwning a PHP application

15 / 81

Suhosin did it, it worked great,
but we're in 2017:

It has some useless features
It lacks some useful features
It's not very industrializable

Suhosin7 is not production-ready anyway :'(

Lets write our own PHP hardening patch!

Behold the snuffleupagus!

» What about hardening php itself?

16 / 81

https://suhosin.org/

» Snuffleupagus?!

Aloysius Snuffleupagus, more commonly known as Mr. Snuffleupagus,
Snuffleupagus or Snuffy for short, is one of the characters on Sesame Street.

He was created as a woolly mammoth, without tusks or (visible) ears, and has
a long thick pointed tail, similar in shape to that of a dinosaur or other reptile.

— wikipedia

17 / 81

» The Snuffleupagus!

18 / 81

» Why Babar then?

19 / 81

» Totally Spies! talk from hacklu 2015!

20 / 81

» PhP leVEl viRtUaL-pATcHinG

21 / 81

» The issue

disable_function, that can globally forbid the usage of arbitrary functions
Your CMS update system is using system
Either forbid system, or keep your website out of date.
That's why we can't have nice things.

22 / 81

» How we're helping

Disable system globally:

sp.disable_function.function("system").drop();

Allow system calls in a specific file:

sp.disable_function.function("system").filename("up.php").allow();
sp.disable_function.function("system").drop();

Allows system calls in a file, matching a sha256 hash:

sp.disable_function.function("system").filename("up.php").hash("d2..a").allow();
sp.disable_function.function("system").drop();

We even provide a user-friendly script to generate a configuration file, freezing
dangerous functions usage.

23 / 81

» About the syntax

We "designed"¹ the rules syntax like this:

24 different filters
Everything is documented
Lots of examples

to be able to patch:

every wordpress CVE since 2010
the RIPS advent calendar
a lot of high-profile web exploits
our own 0dayz, more on this in a few slides…

¹ Designing configuration formats is super-duper-awful as fuck in case you're wondering.

24 / 81

» Rules examples

sp.disable_function("PHPThingy::MyClass::method_one>internal_func").drop();
sp.disable_function("admin_cron_thingy").cidr("127.0.0.1/32").allow();
sp.disable_function("admin_cron_thingy").drop();
sp.disable_function.function("render_tab3").var("_REQUEST[tab]").value_r("\"").drop();
sp.disable_function.function("system").pos("0").value_r("[^a-z]").drop();

25 / 81

» WhaT caN we do wiTh tHis?

26 / 81

» system() injections

27 / 81

» What the documentation is saying

When allowing user-supplied data to be passed to this function, use
escapeshellarg() or escapeshellcmd() to ensure that users cannot trick the system
into executing arbitrary commands.

28 / 81

» What people are doing

<?php
$ip_addr = system("dig +short " . $_GET["address"]);
echo "The ip adress of $_GET['address'] is $ip_addr";
?>

29 / 81

» What we're getting

CVE-2017-7692: Authen RCE on SquirrelMail
CVE-2016-9565: Unauth RCE on Nagios Core
CVE-2014-1610: Unauth RCE on DokuWiki
Every single shitty modem/router/switch/IoT.

30 / 81

» How we're (kinda) killing it

sp.disable_function.function("system").param("command").value_r("[$|;&\n`]").drop();

31 / 81

» mail related RCE

32 / 81

» What the documentation is saying

The additional_parameters parameter can be used to pass additional flags as
command line options to the program configured to be used when sending
mail

Known since 2011, popularized by RIPS.

33 / 81

http://esec-pentest.sogeti.com/posts/2011/11/03/using-mail-for-remote-code-execution.html
https://www.ripstech.com/blog/2016/roundcube-command-execution-via-email/

» What people are doing

// Olol, sending some emails
mail(..., $_GET['a']);

34 / 81

» What we're getting

CVE-2017-7692: Authen RCE in SquirrelMail
CVE-2016-10074: RCE in SwiftMailer
CVE-2016-10033: RCE in PHPMailer
CVE-2016-9920: Unauth RCE in Roundcube
RCE in a lot of webmails

35 / 81

» How we're (kinda) killing it

sp.disable_function.function("mail").param("additional_parameters").value_r("\-").drop();

36 / 81

» ManAGinG ruLEs

Fig 4. The security team bringing new rules to the sysadmin

37 / 81

» Ain'T noBOdY haS tiME to wRitE
ruLEs

38 / 81

» DeAd buG cLasSEs

Fig 5. PHP CMS free from various security bug classes

39 / 81

» Session-cookie stealing via XSS
Like suhosin, we're encrypting cookies with a secret key tied to:

The user-agent of the user
A static key
An environnement variable that you can set to:

The IP addresses¹
The TLS extended master key
…

¹ No the best idea ever: in 2017, people are roaming a lot.

40 / 81

» Misc cookie things
If you're coming over https, your cookie gets the secure flag
If cookies are encrypted, they are httpOnly

41 / 81

» RCE via file-upload

42 / 81

» What the documentation is saying

Not validating which file you operate on may mean that users can access
sensitive information in other directories.

43 / 81

» What people are doing

$uploaddir = '/var/www/uploads/';
$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);
move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)

44 / 81

» What we're getting

CVE-2001-1032 : RCE in PHP-Nuke via file-upload
...
15 years later
...
CVE-2016-9187 : RCE in Moodle via file-upload

There are 850 CVE entries that match your search
— cve.mitre.org

45 / 81

» How we're killing it

Suhosin style:

sp.upload_validation.script("tests/upload_validation.sh")
sp.upload_validation.simulation(0)

One trick is to rely on vld¹ to ensure file doesn't contain php code:

$ php -d vld.execute=0 -d vld.active=1 -d extension=vld.so $file

¹ Vulcan Logic Disassembler. (yes)

46 / 81

» Unserialize

47 / 81

» What the documentation is saying

Do not pass untrusted user input to unserialize() [...]. Unserialization can result
in code being loaded and executed [...].

48 / 81

» What people are doing

$my_object = unserialize($_GET['o']);

49 / 81

» What we're getting

CVE-2016-????: Unauth RCE in Observium (leading to remote root)
CVE-2016-5726: Unauth RCE in Simple Machines Forums
CVE-2016-4010: Unauth RCE in Magento
CVE-2017-2641: Unauth RCE in Moodle
CVE-2015-8562: Unauth RCE in Joomla
CVE-2015-7808: Unauth RCE in vBulletin
CVE-2014-1691: Unauth RCE in Horde
CVE-2012-5692: Unauth RCE in IP.Board

50 / 81

» How we're killing it

Php will discard any garbage found at the end of a serialized object: we're simply
appending a hmac at the end of strings generated by serialize.

It looks like this:

 s:1:"a";650609b417904d0d9bbf1fc44a975d13ecdf6b02b715c1a06271fb3b673f25b1

51 / 81

» rand and its friends

52 / 81

» What the documentation is saying

This function does not generate cryptographically secure values, and should
not be used for cryptographic purposes.

53 / 81

» What people are doing

$password_reset_token = rand(1,9) . rand(1,9) . [...] . rand(1, 9);

54 / 81

» What we're getting

CVE-2015-5267: Auth bypass in Moodle
CVE-2008-4102: Auth bypass in Joomla
Various captcha bypasses

55 / 81

» How we're killing it

We're simply replacing every call to rand and mt_rand with the secure PRNG random_int.

56 / 81

» XXE

57 / 81

» What the documentation is saying

Not a single word about this ;)

58 / 81

» What people are doing

$xmlfile = file_get_contents('php://input');
$dom = new DOMDocument();
$dom->loadXML($xmlfile);
$data = simplexml_import_dom($dom);

59 / 81

» What we're getting

CVE-2015-5161: Unauth arbitrary file reading on Magento
CVE-2014-8790: Unauth RCE in GetSimple CMS
CVE-2011-4107: Authen LFI in PHPMyAdmin

60 / 81

» How we're killing it

We're calling libxml_disable_entity_loader(true) at startup, and nop'ing its call.

61 / 81

» The seCUriTy teAM is �NAlLy leSs
gRumPy

Fig 6. Photo of the security team admiring a protected PHP stack

62 / 81

» Time for a practical example

63 / 81

» Earlier yesterday evening

— What about auditing something to find vulns to burn?

— What about burning old ones instead so we can get wasted at the lobby?

— Even better!

64 / 81

» REDACTED
On this slide, we burned a RCE in a well-known monitoring software, and shown how to

patch it with snuffleupagus.

65 / 81

» MisC coOL sTufF

66 / 81

» Unrelated misc things
chmod hardening
sp.disable_function.function("chmod").param("mode").value_r("7$");
sp.disable_function.function("chmod").param("mode").value_r("o\+w");

backdoors detection
sp.disable_function.function("ini_get").param("var_name").value("open_basedir");
sp.disable_function.function("is_callable").param("var").value("system");

prevent execution of writeable files
sp.readonly_exec.enable();

Ghetto sqli detection
sp.disable_function.function_r("mysqli?_query").ret("FALSE");
sp.disable_function.function_r("PDO::query").ret("FALSE");

Ghetto sqli hardening
sp.disable_function.function_r("mysqli?_query").param("query").value_r("/*");
sp.disable_function.function_r("mysqli?_query").param("query").value_r("--");
sp.disable_function.function_r("mysqli?_query").param("query").value_r("#");
sp.disable_function.function("PDO::query").param("query").value_r("/*");
sp.disable_function.function("PDO::query").param("query").value_r("--");
sp.disable_function.function("PDO::query").param("query").value_r("#");

67 / 81

» ColLEcTinG

Fig 8. The security team welcoming new vulnerabilities

68 / 81

» HarVEsTinG 0daYs
If you've got something like this

$line = system("grep $var dict.txt");

You can do something like that

sp.disable_function.function("system").var("var").regexp("[;`&|]").dump().drop();

And wait until someone finds a vuln to collect a working exploit.

69 / 81

» PerFOrManCE imPAcT
Snuffleupagus is currently deployed on an Alexa¹ top 8k website.
We're using it on some customers
No performance impact noted
We're only hooking the functions that you specify
Filter-matching is written with performances in mind

¹ Totally not toolslib.net and some Malwarebytes backend

70 / 81

» CloSE-to-NO-peRf-IMpaCt

Fig 9. A Snuffleupagus-hardened stack running at full speed

71 / 81

» WhaT's leFt to do
Fixing known bugs
Finding and fixing new bugs
Killing more bug-classes, like CSRF, sloppy-comparisons and SQLI¹
Party hard²

¹ We're working on it ;)
² We're working on it too.

72 / 81

» How caN yoU geT tHis?
https://github.com/nbs-system/snuffleupagus for the sauce code
https://snuffleupagus.rtfd.io for the (amazing) documentation
Come talk to us, we're friendly!

73 / 81

https://github.com/nbs-system/snuffleupagus
https://snuffleupagus.rtfd.io/

» ResULtS

Fig 10. Customers using the website without noticing that it's a PHP trashfire

74 / 81

» SpeAKinG of pHp, diD yoU kNow
tHat…

75 / 81

» PhP suPpORtS emOJi
<?php
function � ($♥) {
 echo $♥;
}
$� ⚕ = 1;
echo $� ⚕ ;
�(42);

76 / 81

» PhP7 is noW usINg zend_string
Z_STRVAL to get the char* value from a zval*
ZSTR_VAL to get the char* value from a zend_string*
Z_STR to get the zend_string* from a zval*
ZVAL_STRING to create a zval from a char*
ZVAL_STR to create a zval from a zend_string*
ZSTR_ALLOCA_ALLOC to allocate a zend_string*
STR_ALLOCA_ALLOC does the same thing.
ZSTR_ALLOCA_INIT to allocate and init a zend_string from a char*
ZVAL_NEW_STR assign a zval* from a zend_string*

77 / 81

» CriTIcaL reCEpTiOn

So basically this "security module" is like an elephant in a china store, walking
around and clumsily breaking things with the best of intentions. What a
nightmare...

— Someone on /r/php

.

Over all, lots of good features pretty cleverly and unobtrusively implemented.
— Soneone on /r/netsec

78 / 81

» ManDAtoRy �NAl quOTe

There are only two kinds of languages: the ones people complain about and
the ones nobody uses.

— Bjarne Stroustrup

Did you know that ¾ of the web is using php.

79 / 81

» CheERs
The RIPS people for their awesome scanner
SectionEins for Suhosin and inspiration
The HardenedPHP project for leading the way
websec.fr for showcasting our most convoluted exploits
Our guinea pigs friends who alpha-tested everything
People that called us names gave us constructive feedback

80 / 81

https://www.ripstech.com/
https://www.sektioneins.de/
http://hardened-php.net/
https://websec.fr/

81 / 81

