
» Snuffleupagus
An elephant with some salt,
in your php stack,
killing bug classes,
and virtual-patching,
what is remaining.

1 / 72

» Disclaimer
We gave subsets of this talks at other conferences,

you might experience a déjà vu feeling¹ .

1· But fear not, we added a bunch of cool new stuff!

2 / 72

» Bonjour

3 / 72

» Bonjour
We're super happy to be here
We're both French¹, and are working together
In the security team of a company called NBS System
It's a hosting company, for websites and stuff
You might also know it as "the cloud"

1. Enjoy our frenglish.

4 / 72

» What are we trying to fix?

Reducing the ratio of shell/day happening on PHP7+ websites on the internet

5 / 72

» PHP in a nutshell

Fig 1. The security team casually reading some php code

6 / 72

» More seriously
We're hosting a lot of websites, most of them written in PHP.
PHP is known to be an "interesting" language¹ and some of its users are highly
"creative".

How can we prevent our customers (and people on the web) to get pwned on a daily
basis?

1. Also known as a trigger-happy multi-barrel footgun

7 / 72

» What we currently have
We've got a dedicated security team
We've got kick-ass OS-level hardening (grsecurity ♥)
We've got a pile of custom IDS machinery
We've got a fancy (and open sauce) WAF called naxsi

8 / 72

» What we currently have
We've got a dedicated security team
We've got kick-ass OS-level hardening (grsecurity ♥)
We've got a pile of custom IDS machinery
We've got a fancy (and open sauce) WAF called naxsi

But some vulnerabilities are still not patchable without touching the PHP code, but we
don't want to, even with a 6 meter¹ pole

1· Metric system is the only valid unit system.

9 / 72

» Can't we harden PHP itself?
Suhosin did it, it worked great, but we're in 2018 now:

It has super-cool features
It lacks some fancy ones
It's painful to industrialize
It's on life-support
It doesn't fly on PHP7+

10 / 72

» Here comes NIH syndrom!

Fig 1. Us, ready to conquer the world with our new project!

11 / 72

» So we wrote our own hardening module,
in C!

Fig 1. The magnificent Snuffleupagus

12 / 72

» Snuffleu-what?

13 / 72

» Snuffleupagus?!

Aloysius Snuffleupagus, more commonly known as Mr. Snuffleupagus,
Snuffleupagus or Snuffy for short, is one of the characters on Sesame Street.

He was created as a woolly mammoth, without tusks or (visible) ears, and has
a long thick pointed tail, similar in shape to that of a dinosaur or other reptile.

— wikipedia

14 / 72

» MAGNIFICENT §!1§!!!1§§

15 / 72

» Where does it live
Apache

mod_cgi mod_auth mod_heartmonitor

PHP

pdo.so snuffleupagus.so sodium.so

Filesystem

index.php admin.php backdoor.php

16 / 72

» PHP-level virtual patching¹

1· Also known as Snuffleupatchgus

17 / 72

» The issue with "vanilla" php hardening

disable_function can globally forbid usage of arbitrary functions

Your CMS is using system for its update mechanism

Either forbid system or keep your website up to date

This is why we can't have nice things.

18 / 72

» How we're helping

Disable system globally:

sp.disable_functions.function("system").drop();

Allows system calls in a specific file

sp.disable_functions.function("system").filename("up.php").allow();

sp.disable_functions.function("system").drop();

Allow system calls in a file, with a matching sha256:

sp.disable_functions.function("system").filename("up.php").hash("13..a").allow();

sp.disable_functions.function("system").drop();

We even provide a user-friendly script to generate a configuration file, freezing
dangerous functions usage.

19 / 72

» What can we do with php-level
virtual-patching?

20 / 72

» About the syntax

We designed the rules syntax like this:

24 different filters
Documentation for everything
Lots of examples

to be able to easily patch:

every wordpress CVE since 2010
the RIPS advent calendar
a lot of high-profile web exploits
our own 0dayz¹

¹ Come to the workshop on Friday to see some of them ;)

21 / 72

» Examples
sp.disable_function("PHPThingy::MyClass::method_one>internal_func").drop();

sp.disable_function("admin_cron_thingy").cidr("127.0.0.1/32").allow();

sp.disable_function("admin_cron_thingy").drop();

sp.disable_function.function("render_tab3").var("_REQUEST[tab]").value_r("\"").drop();

sp.disable_function.function("system").pos("0").value_r("[^a-z]").drop();

22 / 72

» What can we do with this?

23 / 72

» system() injections

24 / 72

» What the documentation is saying

When allowing user-supplied data to be passed to this function, use
escapeshellarg() or escapeshellcmd() to ensure that users cannot trick the system
into executing arbitrary commands.

» What people are doing

<?php

$ip_addr = system("dig +short " . $_GET["address"]);

echo "The ip adress of $_GET['address'] is $ip_addr";

?>

25 / 72

» What we're getting

CVE-2017-7692: Authen RCE on SquirrelMail
CVE-2016-9565: Unauth RCE on Nagios Core
CVE-2014-1610: Unauth RCE on DokuWiki
Every single shitty modem/router/switch/IoT.

» How we're (kinda) killing it

sp.disable_function.function("system").param("command").value_r("[$|;&\n`]").drop();

26 / 72

» mail related RCE

27 / 72

» What the documentation is saying

The additional_parameters parameter can be used to pass additional flags as
command line options to the program configured to be used when sending
mail

Known since 2011, popularized by RIPS.

» What people are doing

// Olol, sending some emails

mail(..., $_GET['a']);

28 / 72

http://esec-pentest.sogeti.com/posts/2011/11/03/using-mail-for-remote-code-execution.html
https://www.ripstech.com/blog/2016/roundcube-command-execution-via-email/

» What we're getting

CVE-2017-7692: Authen RCE in SquirrelMail
CVE-2016-10074: RCE in SwiftMailer
CVE-2016-10033: RCE in PHPMailer
CVE-2016-9920: Unauth RCE in Roundcube
RCE in a lot of webmails

» How we're (kinda) killing it

sp.disable_function.function("mail").param("additional_parameters").value_r("\-").drop();

29 / 72

» Writing rules

Fig 1. The security team realising that it needs to write a lot of rules.

30 / 72

» Nobody has time to write rules
So lets kill some bug classes!

31 / 72

» Session-cookie stealing via XSS
Like suhosin, we're encrypting cookies with a secret key tied to:

The user-agent of the client
A static key
And environnment variable that you can set to:

The ip address¹
The TLS extended master key
…

¹ Not the best idea ever: in 2017, people are roaming a lot.

32 / 72

» Misc cookies things
If you're coming over https, your cookies get the secure flag
If cookies are encrypted, they are httpOnly
Support for SameSite to kill CSRF

33 / 72

» RCE via file-upload

34 / 72

» What the documentation is saying

Not validating which file you operate on may mean that users can access
sensitive information in other directories.

» What people are doing

$uploaddir = '/var/www/uploads/';

$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);

move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)

35 / 72

» What we're getting

CVE-2001-1032 : RCE in PHP-Nuke via file-upload
...
15 years later
...
CVE-2016-9187 : RCE in Moodle via file-upload

There are 850 CVE entries that match your search
— cve.mitre.org

36 / 72

» How we're killing it

Suhosin style:

sp.upload_validation.script("tests/upload_validation.sh").enable();

One trick is to rely on vld¹ to ensure file doesn't contain php code:

$ php -d vld.execute=0 -d vld.active=1 -d extension=vld.so $file

¹ Vulcan Logic Disassembler. (yes)

37 / 72

» Unserialize

38 / 72

» What the documentation is saying

Do not pass untrusted user input to unserialize() [...]. Unserialization can result
in code being loaded and executed [...].

» What people are doing

$my_object = unserialize($_GET['o']);

39 / 72

» PHP annecdote

Fig 1. Rant about PHP in 3… 2… 1…

40 / 72

» Memory corruptions are not security
issues

Fig 1. In PHP's world, unsanitized outputs are out of scope

41 / 72

» What we're getting

CVE-2012-5692: unauth RCE in IP.Board
CVE-2014-1691: Unauth RCE in Horde
CVE-2015-7808: Unauth RCE in vBulletin
CVE-2015-8562: Unauth RCE in Joomla
CVE-2016-????: Unauth RCE in Observium (leading to remote root)
CVE-2016-5726: Unauth RCE in Simple Machines Forums
CVE-2016-4010: Unauth RCE in Magento
CVE-2017-2641: Unauth RCE in Moodle

42 / 72

» How we're killing it

Php will discard any garbage found at the end of a serialized object: we're simply
appending a hmac at the end of strings generated by serialize.

It looks like this:

s:1:"a";650609b417904d0d9bbf1fc44a975d13ecdf6b02b715c1a06271fb3b673f25b1

43 / 72

» rand and its friends

44 / 72

» What the documentation is saying

This function does not generate cryptographically secure values, and should
not be used for cryptographic purposes.

» What people are doing

$password_reset_token = rand(1,9) . rand(1,9) . [...] . rand(1, 9);

45 / 72

» What we're getting

CVE-2008-4102: Auth bypass in Joomla
...
CVE-2015-5267: Auth bypass in Moodle
Various captcha bypasses

» How we're killing it

We're simply replacing every call to rand and mt_rand with random_int.

46 / 72

» XXE

47 / 72

» What the documentation is saying

Not a single warning ;)

» What people are doing

$xmlfile = file_get_contents('php://input');

$dom = new DOMDocument();

$dom->loadXML($xmlfile);

$data = simplexml_import_dom($dom);

48 / 72

» What we're getting

CVE-2011-4107: Authen LFI in PHPMyAdmin
...
CVE-2015-5161: Unauth arbitrary file reading on Magento

» How we're killing it

We're calling libxml_disable_entity_loader(true) at startup, and nop'ing its call.

49 / 72

» Stream wrappers

50 / 72

» What the documentation is saying

PHP comes with many built-in wrappers for various URL-style protocols for
use with the filesystem functions such as fopen(), copy(), file_exists() and
filesize().

Wrappers like: file://, http://, ftp://, php://, zlib://, data://, glob://, phar://, ssh2://, rar://,
ogg://, expect://, …

51 / 72

» What we're getting

Various exfiltration means
Memory corruptions for everyone
RCE via phar:// upon file access
Zip bombs
Whitelist bypasses via zip://
You name it

52 / 72

» How we're killing it

With a simple whitelist:

sp.wrapper_whitelist("file,php");

53 / 72

» "Smart" comparisons

54 / 72

» What the documentation is saying

55 / 72

» What the documentation is saying (cont.)

56 / 72

» What the documentation is saying (cont.)

57 / 72

» What people are doing

Doing comparisons like PHP is a "normal" language, with things like:

if ($a == $_GET['password'])

array_search($a, $my_array)

in_array($a, $my_array)

$val = $a?"yay":"nay";

sha1('aaroZmOk') != sha1('aaK1STfY')

'0010e2' != '1e3'

58 / 72

» What we're getting

Launch grep -Rn '[^=]==[^=]' in any php application, and be "amazed"

Password comparison
CSRF tokens
Password reset
User id
Currencies amounts comparison
Every single comparison of data

59 / 72

» How we're killing it

Global strict mode taking advantage of type annotation

Silently replacing == with ===

60 / 72

» Unrelated misc things
chmod hardening

sp.disable_function.function("chmod").param("mode").value_r("7$");

sp.disable_function.function("chmod").param("mode").value_r("o\+w");

backdoors detection

sp.disable_function.function("ini_get").param("var_name").value("open_basedir");

sp.disable_function.function("is_callable").param("var").value("system");

prevent execution of writeable files

sp.readonly_exec.enable();

Ghetto sqli detection

sp.disable_functions.function_r("mysqli?_query").ret("FALSE").dump().allow();

sp.disable_functions.function_r("PDO::query").ret("FALSE").dump().allow();

Ensure that certificates are properly verified

sp.disable_function.function("curl_setopt_array")

 .param("options[CURLOPT_SSL_VERIFYHOST]").value("0").drop();

sp.disable_function.function("curl_setopt_array")

 .param("options[CURLOPT_SSL_VERIFYPEER]").value("0").drop();

61 / 72

» Free 0dayz

Fig 1. The security team catching juicy vulnerabilities

62 / 72

» Harvesting 0days
If you've got something like this

$line = system("grep $var dict.txt");

You can do something like that

sp.disable_function.function("system").var("var").regexp("[;`&|\n]").dump().allow();

And wait until someone finds a vuln to collect a working exploit.

63 / 72

» Performance impact
Currently deployed on (at least) one Alexa1 top 1k website.
We're using it on some customers
No performance impact noticed
We're (kinda) only hooking the functions that you specify
Filter-matching is written with performances in mind

64 / 72

» Speed!

Fig 1. A regular php stack with Snuffleupagus running at full speed.

65 / 72

» What's left to do
Killing more bug-classes like SQLI¹
Provide more hardening features
Improve the virtual patching capabilities
Party party party
Give a workshop Friday morning

¹ We're working on it ;)

66 / 72

» What workshop?
We'll give a workshop Friday morning, about

Deploying Snuffleupagus

Patching some real-world¹ vulnerabilities

Discuss patching strategies and mitigations details

Careful, the whole workshop will be held with a thick French accent.

1· And previously unknown

67 / 72

» Where can you get this wonder?
https://github.com/nbs-system/snuffleupagus for the sauce code

https://snuffleupagus.rtfd.io for the (amazing) documentation

Come talk to us, we're friendly!

Friday during the workshop

68 / 72

https://github.com/nbs-system/snuffleupagus
https://snuffleupagus.rtfd.io/

» Mandatory final quote

There are only two kinds of languages: the ones people complain about and
the ones nobody uses.

— Bjarne Stroustrup

Did you know that more than ¾ of the web is using PHP?

69 / 72

» Cheers
The RIPS people for their awesome scanner

SectionEins for Suhosin and inspiration

The HardenedPHP project for leading the way

websec.fr for showcasting our most convoluted exploits

Our guinea pigs friends who alpha-tested everything

Folks that called us names gave us constructive feedback

44con for accepting our talk ♥

70 / 72

» Questions?

71 / 72

72 / 72

